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Abstract

The layer-wise generalized theory of elastodynamic of multilayer plates is presented in this paper. This theory is
based on expanding the displacement vector components of each layer into power series about the transverse coor-
dinate. The number of terms retained in the power series is arbitrary and it is chosen depending on the problem being
considered and the solution accuracy required. The system of governing equations is obtained by Hamilton’s variation
principle.

The possibilities of the theory proposed and validity of results obtained are illustrated by examples of investigating
the strain-stressed state of one- and three-layer structures. The issues of applicability of two-dimensional approxima-
tions built on the basis of the power series method are considered with respect to calculation of displacements, inplane
and transverse stresses in multilayer plates under dynamic loading. Calculation results are compared with data obtained
from Ambartsumyan’s theory (the hypothesis of a unique non-strained normal for the pack), the layer-wise theory
based on the broken line hypothesis as well as the three-dimensional elasticity theory. © 2002 Published by Elsevier
Science Ltd.
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1. Introduction

Over the past decades a dramatic development of computational tools and mathematical methods for
analyzing the dynamics of multilayer structures has been observed (Whitney and Sun, 1977; Librescu and
Reddy, 1986; Di Sciuva, 1986; Thangjitham et al., 1987; Reddy, 1993; Nosier et al., 1994; Cupial and
Niziol, 1995; Smetankina et al., 1995; Tessler et al., 1995; Cheng et al., 1996; Shupikov et al., 1998;
Shupikov and Smetankina, 2001). Progress in this field, on the one hand, has been brought about by the
necessity of solving new application problems, and on the other hand it became possible because of the
truly fantastic developments in computers.

The key feature of the modern stage of development of the mechanics of multilayer structures consists
in the transition from more simple models to more complex ones possessing higher accuracy and univer-
sality. Apparently, this trend will be sustained in the near future and one of the basic lines of research in
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computational mechanics of multilayer structures will be the development of mathematical models and
algorithms making it possible to more accurately describe the processes taking place during deformation in
actual structures.

When considering an elastic material with sufficiently small deformations, the standard of accuracy is the
classical equations of elasticity (Novatsky, 1975). However, the application of three-dimensional elasticity
theory equations for investigating non-stationary deformation in multilayer structures is faced with sig-
nificant mathematical complexities (Shupikov and Ugrimov, 1999). Therefore, two-dimensional theories
have found extensive implementation in the design of real structures (see, for example, Reddy, 1993;
Smetankina et al., 1995; Tessler et al., 1995; Shupikov et al., 1998; Shupikov and Smetankina, 2001).

As a rule, two-dimensional approximations are built for a specific class of structures, e.g. three-layer
structures with rigid or soft fillers (Grigoliuk and Chulkov, 1964; Prusakov, 1951) and multilayer structures
having a definite (symmetric, regular) pack structure (Lekhnitskii, 1941; Moskalenko and Novichkov,
1967). In doing so, the transition to another class of structures is not always admissible since this may lead
to an inadequate description of the structure’s behavior or, what is also important, to excessive compu-
tational input. Hence, it is necessary to develop universal theories having a high accuracy when describing a
wide class of structures, algorithmic flexibility, simplicity and efficiency.

One of the basic methods of building two-dimensional approximations is the power series method. This
method dates back to the works of the renowned mathematicians Cauchy (1828) and Poisson (1829) who
suggested to expand stress vector components into power series about the transverse variable, which
characterizes the position of an arbitrary point with respect to the middle surface. In doing so, the as-
sumption on convergence of these series was introduced. Later on, this approach was extended by Krauss
(1929) and Kilchevsky (1939) to the general theory of shell statics. This approach was developed by Epstein
(1942) in the dynamics of plates and shells. At present, theories based on the assumed stress field are used
less frequently in practice because they are more complex in their numerical implementation as compared to
the displacement-based theories (Reddy, 1993). Further, the work discusses the genesis of displacement-
based theories based on the power series method and their application ranging from homogeneous to
multilayer structures.

The power series method has enjoyed wide application for building applied displacement-based math-
ematical theories of homogeneous plates and shells. Thus, in the well-known Mindlin plate theory based on
Timoshenko type hypotheses it is assumed that the plate’s displacement vector components have the fol-
lowing form (Mindlin, 1951)

u:u0+zlﬂxa U:U0+leya w =Wy, (1)

where z is the transverse coordinate; ug, vg, wy are displacements of a point on reference surface in the
direction of the coordinate axes; ,, , are the angles of rotation of a transverse normal about axes Ox and
0y, correspondingly. The functions ug, v, wo, V., Y, are the sought for functions depending on plane
coordinate x, y. This approach was extended by Mirsky and Herrmann (1957) to the theory of cylindrical
shells.

Hypotheses (1) may be considered as power series expansions of displacements about the transverse
coordinate. In doing so, two expansion terms are retained for the inplane displacements and only one term
is retained for the transverse displacement. According to the usual tradition (for example, Reddy, 1989;
Tessler et al., 1995), in the following we will designate models by the maximum power of the transverse
coordinate retained in the series for tangential and transverse displacements. Thus, the hypotheses of
Mindlin plate theory being considered will be designated as {1, 0}.

Taking into account the transverse shear strain in hypothesis (1), provides this theory with a wider range
of applicability as compared to Kirchhoff classical theory. However, the incorrectness of the approximation
w = wy in hypotheses (1), which was the same as in Kirchhoff classical theory, as well as no allowance for
the curved normal in the model, has forced the investigators to develop advanced refined theories.
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A number of refined models were developed, which take into account a greater number of terms in the
power series and which have wider applicability limits.

Naghdi (1957) derived the equations of the general theory of shells, which take into account the influence
of transverse normal and shear strains. The displacements were approximated by the following expressions:

u=uy+z,, v=uvy+zp,, w=wy+zy,+2C.

Lo et al. (1977) developed the theory {3, 2} which describes the spatial character of strain with greater
accuracy (non-linear distribution of the displacements and parabolic distribution of the transverse shear
stresses with respect to the thickness coordinate). The authors proceeded from the approximation of dis-
placement vector components with finite power series. In doing so, the inplane components changed ac-
cording to the cubic law and the transverse ones changed according to the quadratic law:

u=1up +Zl//x +226x +Z3@x7
v=uy+zy, + ¢ + 20, (2)
w=wy+ 2z, +22E.

The theory allows for the affect of the shear strains and the transverse normal strains, as well as of the
normal curvature. This is especially significant when considering structures having a relatively big thickness
as well as during localized loading.

Analyzing the characteristics of the models being considered, one may assert the following: an increase in
the number of terms retained in the power series leads to a more accurate description of the plate strain
process. The more detailed review of refined models for homogeneous construction can be found, for
example, in the work of Lo et al. (1977).

The power series method is used widely in the theory of multilayer plates and shells as well.

The multilayer structure has a considerable effect on the requirements to the theory being used. The
presence of layers in the pack, which have significantly differing physical characteristics, makes the structure
all the more susceptible to transverse strain, viz. shear and reduction. The deflected mode of multilayer
structures has a spatial character defined by the curvature and length variations of the normals to the
external surfaces. A no less important factor of a well-posed statement of the problem of multilayer
structure strain is the strict implementation of boundary conditions, as well as the interlayer contact
conditions. Unfortunately, in spite of extensive investigation in this area, the dynamics of multilayer
structures has not yet been investigated sufficiently.

In the theory of multilayer structures there exist two approaches to building two-dimensional theories of
multilayer plates and shells (Grigoliuk and Kogan, 1972; Grigoliuk and Kulikov, 1988; Reddy, 1989;
Reddy, 1993; Grigoliuk and Kogan, 1998), viz.:

e the first, more general approach, uses hypotheses for each separate layer to derive equations (Reddy,
1989; Reddy, 1993; Smetankina et al., 1995; Shupikov et al., 1998);

¢ the second approach uses hypotheses for the pack as a whole to derive the governing equations (Ambart-
sumyan, 1974; Reddy, 1989; Reddy, 1993; Tessler et al., 1995).

In the theory of composite plate and shells these approaches are called layer-wise and equivalent single-
layer respectively. A review of the layer-wise and equivalent single-layer theories contains in works of Noor
and Burton (1989), Reddy (1990) and Grigoliuk and Kogan (1999).

Each approach has its advantages and deficiencies. Thus, the number of governing equations in the first
approach depends on the number of layers, which increases the problem complexity. This approach,
however, makes it possible to obtain a more accurate description of strains and stresses in each pack layer,
as well as of the interlayer contact conditions.
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The number of the equations in the second approach does not depend on number of layers. However, in
all single-layer displacement-based theories the displacements and strains are continuous through the
thickness of pack. This leads to discontinuous stress field through the thickness because different me-
chanical characteristics of layers are used to compute stresses. Thus, within the framework of single-layer
displacement-based theories it is impossible to describe accurately the interlayer contact stresses as well as
the transverse strains over the pack thickness.

The power series method has found its application in both approaches.

Tessler et al. (1995), in investigating the vibrations of thick multilayer plates, used the equivalent single-
layer theory based on the model {1, 2}. Lo et al. (1977) developed the equivalent single-layer third-order
theory based on hypothesis (2) for investigating the behavior of composites. Reddy’s third-order theory is
based on approximation of the displacement field by the expressions

4 ow 4 ow
— — 3_ R = — 3— P =
ul(x>yaz) — u+z¢l Z 342 <¢1 + ax)v u2(x7y72) U+Z¢2 Z 32 (¢2 + ay)a 143()5,}’72) w,

which may be considered as power expansions of the displacement vector components.

The best-known layer-wise theory of a multilayer structure is based on the broken line hypothesis
(Cupial and Niziol, 1995; Smetankina et al., 1995). One of the variants of this theory is Grikoliuk’s model
(Grigoliuk and Chulkov, 1964; Smetankina et al., 1995), in which the displacements of each plate layer are
described by hypothesis (1):

i—1
”i(x»y,z» t) =up + Zh/l//x/ + (Z - 51’—1)‘//;;/‘7
j=1
. i—1 (3)
v (‘x7yaz7 [) =g + Zhjlpyj + (Z - 51'71)‘10}7‘
i=1

J

W (x,y,2,t) = wy.

Here u', v, w' are the displacements of a point in the ith layer in the directions of the coordinate axes, 7 is the
time, A; is the thickness of the ith layer, 6, = ijl h;.

The deficiency of this model is the transverse displacements approximation used, which leads to an
absence of pack reduction over the thickness. This model turns out to be inefficient under localized effects
on the plate characterized by a non-linear dependence of displacements and stresses on the transverse
coordinate (Shupikov et al., 1998), as well as the presence of soft fillers in the pack. Shupikov et al. (1998)
suggested a model which eliminates the deficiencies of this theory. The model describes the behavior of each
layer by using hypothesis (2). This theory takes into account transverse shear and normal strains and also
normal curvature in each layer.

Analysis of the characteristics of the multilayer structure models considered has shown that, similar to
the case of homogeneous structures, an increase in the number of retained terms leads to an increase in the
model’s accuracy, which ultimately leads to an extension of model application limits.

This work proposes a generalized displacement-based theory of multilayer plates based on kinematical
hypotheses for each separate layer. The kinematical hypotheses are the expansions of the displacement
vector components for each layer into finite power series about the transverse coordinate.

2. Problem statement

A multilayer plate consists of I layers of constant thickness, 4; is the thickness of the ith layer. Each layer
of plate is made from a homogeneous isotropic material. The mechanical parameters of the ith layer of
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Fig. 1. Multilayer plate.

plate we shall designate as follows: E; is Young’s modulus, v; is Poisson’s ratio, p, is the density. It is as-
sumed that contact between layers excludes their delamination and mutual slipping.

The plate is referred to the Cartesian coordinate system Ox;x,x; and the coordinate plane Oxx, is
connected with the outside surface of the first layer (Fig. 1).

The external force g = g(x,x»,¢) is applied on outside surface of the first layer; ¢,, « = 1,2,3 are the
coordinate axes projections of this force.

The behavior of a multilayer plate is described by the equations of the generalized theory of multilayer
plates. This theory is based on the assumption that the displacements of each plate layer may be presented
in the form of finite power series about the transverse coordinate x;.

The displacements of a point ith layer are described by the following kinematic relationships:

K

i
u, (1, %2, X3,1) = uy + E
k=1

i1
th“(;k + (x5 — 5i1)kuf,k] , o v=1,2,
=1

L i—1
i — E
u3(xl7x27x3at) = Uu3 +
(=1

Bty + (x5 — 5:'1)[“34 ;

=1

where

ul (0 =1,2,3) are displacements of a point ith layer in the direction of the coordinate axes Ox,; u,, us,
u',, ut, are the terms in a power series expansions in x; depending on xi, x, # K, L are maxi-
mum powers of terms retained in a power series for inplane and transverse displacements, accord-
ingly. The values of parameters K, L are chosen depending on the approximation accuracy required.
Thus, in the generalized theory of multilayer plates the behavior of each layer is described by the
theory {K,L}.

The kinematic relationships (4) are equivalent to hypothesis (3) (broken line hypotheses) and hypotheses
of the theory proposed by Shupikov et al., 1998 at K =1, L =0 and K = 3, L = 2, correspondingly.

The strains of the layers are assumed small and are described by Cauchy’s formulas:

) 1/ . .
g;ﬁzi(u;ﬁﬁquu;;,m), 0=1,23, p=1,23, i=T1
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The stresses in the layers are calculated on the basis of the Hooke’s law

Py = 28,58, + ey, gy =¢) +éytes, a=1,23 B=123 i=1,1,

where 6,5 is Kronecker delta, A’ = Ev; /(1 +v,)(1 —2v,), g’ = E;/2(1 4+ v;).

Note that the application of hypothesis (4) yields a continuous displacement field over the pack thickness
and ensures a continuity of inplane strain over the pack thickness and piecewise-continuity of the transverse
strains. Thus, within the framework of the generalized theory there exists the principal possibility of ful-
filling the requirements of the interlayer contact conditions accurately.

The stress resultants in the ith layer are determined under the following formulas

d;
N;];z—N;%l;:/ (x3_5i—l)kprixﬁdx3v o f=123 i=11I
1

i

3. Equations of motion, boundary and initial conditions

The governing equations have been derived from a Hamilton’s variational principle. The equations of
motions in term of stress resultant have the following form

1

I I
DL -] +a=0, > [Li—L]+q=0, Y [Li-1]+¢=0,

i=1 i=1 i=1

-1
N+ N, = kNG 1Y [T = B = e, =0,
J=i
-1 1
i i ik—1 i+ 41 i
Nlé{,l +N2§,2 — kN33 ™'+ hf Z (L5 =B =By =0, (5)
=i
. . . [_l . .
Nis, +Nyj, — N35! "‘hfz [Ljsﬂ _Iélﬂ] Ly, =0, k=1K, t=1L, i=11,

=i

where

i _ agi0 i0 i _ azi0 i0 i _ A7i0 i0
Ly =Ny, +Npy Ly = sz«,z +N12}1, L —N13,1 +Nz3,2»

0 W K i—1 th . T
[l lr l Uyo + Z hf”(rk 1t Jr t/( ol | V=12,
k=1 n

L Jj=

i—1

ol L |
Iér = pr l <u30,n + 2 : z :h/ué! 1t + u32 1t ) .
=1

L /=1 i

Thus, dynamic response of a plate is described by (2K + L)I + 3 differential equations (5).
Eq. (5) are associated with the following boundary condition, which were also obtained from the
variational principle
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1 )i
i0 __ i0* %
Zerm - Z]vrin or u, =u,,
i=1 i=1
1 1
0 _ i0* o
ZNM = ZNM or u, =u,,
i=1 i=1
1 )i
0 o+
> NS =Y NY or uy=uj,
i=1 i=1

-1 -1 (6)
ik k § j+10 __ A7ik* k E j+10* i 0
Nnn + hi Nnn - ]vnn + hi Nnn or Uppe = Upgs
J=i J=i
I1—-1 -1
ik k E J+10 __ Azik* k § j+10* i 0
]Vnr + hi Nm - Nnr + hi Nnr or urk - urk’
Jj=i Jj=i
-1 -1

Ny RN = N YN or =
J=i =i
k=1,K, (=1L, i=1,1
Here inferior indexes n and 7 are the directions normal and tangential to the edge of the plate, the
variables with asterisk indicates boundary value which should be given.
The boundary conditions for the case of simply supported rectangular plate 4 x B are given below
atx; =0, x =4
1 ) -1 )
DNG =0, =0, us=0, Ni+h> N'"=0, uy=0 ui=0,
i=1 =i
at x, = O, Xy = B
1 ) ] ) I-1 ) )
uy =0, ZNég =0, us =0, uy =0, Nég—’—hchNZ];lO:O? uy, =0, (7)
i=1 J=i
k=1,K, (=1L, i=1,1
The equations of motion and boundary condition can be expressed in term of the displacement functions
using accepted hypotheses (4), the stress—strain relation, the strain-displacement relation and the formulas
for stress resultant. The equations of motion (5) in term of the displacement functions may be written as

QU,,—AU =0, (8)

where U is a vector whose components are the sought for functions

UT = (ulau27u37 ul.lkauélwuéé)a i= 1717 k= 15K7 L= laLa

A, Q are a square symmetric matrices with the dimensions ((2K + L)I + 3) x ((2K + L)I + 3); QO is a vector
whose components depend on external force

—T

Q = (qla q2, 43, 07' .. 50)

The elements of matrices Q and A are given in Appendices A and B, correspondingly.
The boundary conditions in term of the displacement functions for the case rectangular simply sup-
ported plate (7) may be also submitted in the matrix form:
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at x; = 0, X1 = A
1 TT c. —_
[Fw}U_O, i,j=1,2K + L) +3;
at x, = 0, Xy = B
2,]T=0, ij=T.CK+DI+3. )

The elements of matrices I''nI"* are given in Appendix C.
The equations of motion (8) and boundary conditions (9) are supplemented by the initial conditions. It is
assumed that the initial conditions are equal to zero:

U|t:0 =0, U-,t|t:0 =0. (10)

Thus, dynamics of multilayer simply supported plate is described by the system of equations of motion
(8), boundary (9) and initial (10) conditions.
4. Solution method

The components of the external load g as well as displacement functions u,, us, u!,, u5, (v = 1,2,k = 1,K,
¢=1,L, i =1,I) are expanded into series by functions B,,,(x;,x) satisfying the boundary conditions

o0

um ock7 Qaz Z otmn ka,,( )7 q:xmn(t)]Bamn(xlaxz)'
m=1 n=1
In the case of simply supported rectangular plate, functions B,,,(x;,x;) have the following form

mMmX|, . NTXp MTX|, . N7X;

..m .
1n7, B;,,, = sin OST, B3, = sin smT.
As a result, the problem of non-stationary vibrations of a multilayer plate for each pair of values m and n

is reduced to integration of a system of ordinary differential equations with constant coefficient

X1 nmx,)
By, = cos C

—mn —mn

QP — A" =0 (11)

where A™ is obtained from A by substituting the partial derivatives in the expressions for the matrix
elements with the coefficients yielded during differentiation of coordinate functions; &, Q" are vectors

(Em”)T = (lenv ¢2mn7 ¢3mn7 @

Dns D) i=11 k=1K, (=1L,

Lkmn>

(@"m)T - (qlmm 92mn s 43mn >y 07 ... 70)
The initial conditions (10) accept a form
iz =0, mn|z 0 =0.

The system obtained is integrated by using the modified method of expanding the solution into a
Taylor’s series.

If the case of static loading is considered, the system (11) is transformed into the following system of
algebraic equations

Amn5 Q

In work for a solution of this system the Gauss method is used.
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5. Numerical results

To validate the efficiency of the theory proposed, a test calculation of strain-stressed state of homoge-
neous and three-layer structures was carried out under static and dynamic loading. Investigated were
simply supported structures.

The issues of building operable two-dimensional approximations based on the power series method are
discussed. The results of calculations obtained according to the theory proposed are compared with three-
dimensional solutions yielded by the method described by Shupikov and Ugrimov (1999).

The strain-stressed state of an infinite homogeneous strip (4; = 0.15m, 4 = 0.10 m, E, = 6.0016 x 10*
MPa, p; = 2.5 x 10’ kgm3, v; = 0.25), under static and dynamic loading is considered (Fig. 2). The in-
finite strip subjected to a loading of the form

. TX
g3 = Pf (1) Smjl» q1=¢q> =0,

where P, is the load intensity, f(¢) is a function of time. For static loading f(¢) = 1, whereas in the case of
dynamic loading the function f'(¢) was chosen to be Heaviside’s function:

I, att>0

=m0 ={5 4120

The load intensity value is equal to 0.1 MPa in all the cases being investigated.

Table 1 summarizes the results of calculating the static deflection and stresses in terms of the generalized
theory at different numbers of retained terms in the series, as well as according to the three-dimensional
theory. The results are given for a point located in the middle of the strip outside surfaces.

The results of calculations show that increasing the number of terms retained in expansions (4) increases
the generalized theory accuracy and it approaches that of a three-dimensional solution.

Fig. 3 shows the distribution of stresses pj, over the plate thickness in its middle section for the case of
the static loading. The results of calculations according to the theory described are compared with exact
solution given in the paper by Little (1973). The numerical results according to generalized theory {7, 6}

Xy

A A

v 3

Fig. 2. Infinite strip.
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Table 1
Strain-stressed state of the infinite strip under static loading
Generalized theory Deflections, u} x 107 (m) In-plane stresses, pl, (MPa) Transverse normal stresses, pi; (MPa)
K L X3:0 X3:h1 X3:O X3:h1 )C3:O X3:h1
1 0 0.33205 0.33205 —0.02702 0.02702 —0.00901 0.00901
3 2 0.96988 0.11167 —0.96378 0.02411 —0.11447 0.01713
5 4 1.00119 0.10431 —0.10479 0.01617 —0.11207 —0.00417
7 6 1.00330 0.10283 —0.10182 0.01684 —0.10114 —0.00065
Three-dimensional theory  1.00360 0.10289 —0.10145 0.01706 —0.1 0
-15 0.5 1
1
bn
B

Fig. 3. Distributions of stresses over the thickness in a strip middle section under static loading: solid line, three-dimensional theory;
dash-dotted line, theory {1, 0}; dotted line, theory {3, 2}; dashed line, theory {7, 6}.

practically coincide with data obtained on the basis of the three-dimensional theory (distinction does not
exceed 1.5%), therefore in the figures they are indistinguishable.

In case of dynamic loading, the similar distribution of stresses over the strip thickness is presented in Fig.
4, This figure shows the stress distributions over the thickness at different time instances corresponding to
the travel time of the dilatational wave over 1/2, 1 and 11 strip thickness respectively. The time of travel of a
dilatational wave over the strip thickness is

hy
="1~27.94
T=7 us,

where V is the dilatational wave velocity, V' = ,/% (Novatsky, 1975).

Due to the fact that two-dimensional theories do not describe the process of wave propagation in the
transverse direction, the results obtained in terms of the generalized and three-dimensional theories differ to
some extent in their character. Only the three-dimensional solution yields a comprehensive presentation of
the wave propagation process over the thickness. However, wave processes in real structures can be ob-
served, as a rule, only during the initial strain stage and over time they decay rapidly. Therefore, the two-
dimensional approximation makes it possible to evaluate the strip’s strain-stressed state with a sufficient
degree of accuracy (Fig. 4).

In the thick strip strain problem being considered the distribution of stresses over the thickness, both for
the static and dynamic cases, has an essentially non-linear character, which is poorly approximated by the
linear law. Hence, the implementation of theory {1, 0} in this case yields significant errors.
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0.5 1

k4

ol |

nof A

Fig. 4. Distributions of stresses over the thickness in a strip middle section under dynamic loading: solid line, three-dimensional theory;
dash-dotted line, theory {1, 0}; dotted line, theory {3, 2}; dashed line, theory {7, 6}.

The three-layer plate is considered (4 =B = 0.3 m, #; = h, = h; = 0.01 m). The first layer of plate is
made of organic glass (E; = 5.59 x 10> MPa, v; = 0.38, p; = 1.2 x 10° kg m~?), the second layer is made of
polymeric material (E; = 2.74 x 10> MPa, v, = 0.38, p, = 1.2 x 10° kgm~*) and third layer is made of silica
glass (E3 = 6.67 x 10* MPa, v; = 0.22, p; = 2.5 x 10° kgm™).

The plate is effected by the load

_ P X X

. Tt .
4= [H(t) = H(t — 1,)] Sln% sm—-sin—=,  q1=¢:=0,

where Py = 0.1 MPa, f;, =5 x 1073 s.
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Tables 2-4 summarize the maximum deflections and stresses in the plate. These values are given for each
layer in the points x; =x, = 0.15 m, x3 =, ; and x3 = J; (i = 1, 3).

The data given in the Tables 2-4 make it possible to estimate the accuracy of two-dimensional ap-
proximation when parameters K and L are increased.

As it is shown from Tables 2 and 3, the maximum values of deflections and stresses calculated by the
generalized theory with parameters {3, 2}, {5, 4} and {7, 6} practically coincide with each other and are
close to the three-dimensional solution. In as much as generalized theory {1, 0} does not allow for pack
reduction, the deflections calculated with the help of this theory are constant over the thickness and their
maximum value is less than the actual one. In this case theory {1, 0} yields increased values of deflection
stresses on the plate’s outside surfaces and the maximum difference of 37% is observed in the first layer.
Nevertheless, the values of tensile stress calculated by the generalized theory {1, 0} and the three-dimen-
sional one for the load-free backside of the plate are close (see Table 3) and differ by no more than 3%.

Analysis of the results given in Table 4 demonstrates that the usage of the generalized theory {7, 6}
makes possible accurate fulfillment of the interlayer contact conditions (p}; = pii' at x; = J;) and of the
boundary conditions on the plate’s outside surfaces (p}; = —q; at x3 =0, p3; = 0 at x3 = J;). Generalized
theory {3, 2} gives a satisfactory description of the transverse normal stress with an error no more than
12%.

Table 2
Deflections of three-layer plates under impulse loading

Deflections u4(4/2,B/2,x3,1) x 10* (m) (x3 = 6,_1/x3 = &)

Generalized theory

K L 1 layer (i =1) 2 layer (i =2) 3 layer (i = 3)

1 0 0.12662/0.12662 0.12662/0.12662 0.12662/0.12662
3 2 0.13814/0.13945 0.13945/0.13880 0.13880/0.13873
5 4 0.13814/0.13945 0.13945/0.13880 0.13880/0.13873
7 6 0.13800/0.13931 0.13931/0.13866 0.13866/0.13859

0.14076/0.14210

0.14210/0.14143

0.14143/0.14136

Three-dimensional theory

Table 3
Inplane stresses of three-layer plates under impulse loading

Stresses p},(4/2,B/2,x3,t) (MPa) (x3 = 6,_1/x3 = §;)

Generalized theory

K L 1 layer i = 1) 2 layer (i =2) 3 layer (i = 3)

1 0 —2.46019/—0.21346 —0.01049/—-0.04719 —5.64165/7.81009
3 2 —1.76882/—0.42842 —0.06900/—0.05946 —5.47748/7.46842
5 4 —1.76195/—0.42267 —0.06860/—0.05909 —5.47758/7.46459
7 6 —1.75989/—0.42227 —0.06858/—0.05902 —5.47210/7.45665

Three-dimensional theory —1,79392/-0.43075 —0.06995/—0.06172 —5.58163/7.60581

Table 4
Transverse normal stresses of three-layer plate under impulse loading

Stresses piy(4/2,B/2,x3,t) (MPa) (x3 = d;_1/x3 = ;)

Generalized theory

K L 1 layer i =1) 2 layer (i = 2) 3 layer (i = 3)

1 0 —1.86972/—0.16223 —0.00797/—0.03642 —2.48235/3.43643
3 2 —0.11144/—0.09126 —0.08273/—0.05085 —0.05182/0.01159
5 4 —0.10032/—0.08189 —0.08207/—0.05023 —0.05018/—0.00001
7 6 —0.10001/—0.08207 —0.08208/—0.05016 —0.05015/0.00000
Three-dimensional theory —0.10000/—0.08372 —0.08372/—0.05112 —0.05112/0.00000
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Fig. 5. Deflections and stresses in the plate middle section on the outside surface of the third layer: solid line, three-dimensional theory;
dash-dotted line, theory {1, 0}; dashed line, theory {7, 6}.

In Fig. 5 time dependencies of deflections and stresses in the plate middle section on the outside surface
of the third layer are presented. The deflection and stress history calculated according to the generalized
and three-dimensional theories has the same character. However, if the maximum values of the tensile stress
on the outside surface of the third layer practically coincide in all theories, the maximum values of dis-
placements obtained with the help of the generalized theory {1, 0} are significantly less than the actual ones.

Fig. 6 shows variation on time of transverse normal stresses p}; in the middle on external surfaces for
each layer of plate. To the left of the graphs one can see points indicated on the plate composition. These
are the points in which the stresses p}; are calculated. The results obtained on the basis of the generalized
theory with parameters {7, 6} and {3, 2} are compared to a three-dimensional solution. On the contact
surfaces, the stresses calculated by the generalized theory are given for the i and i — 1 layers. It is seen that
for the time intervals investigated, the results of calculations based on theory {7, 6} and the three-
dimensional theory practically coincide and the contact conditions are fulfilled accurately. Though the
generalized theory {3, 2} yields a solution close in character to the actual one, the error of approximation of
transverse normal stresses on the external surfaces is still significant. In this case it is impossible to fulfill the
interlayer contact conditions accurately.

The three-layer plate (4 = B = 0.5 m) subjected impulse loading is considered. The impulse load have
form
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. TIXp . Ty
= PyH(t) sin — sin—- =g, =0
g = Rl (1) sin— g ©1=0=0
where Py = 0.1 MPa.

The limits of applicability of two-dimensional theories, depending on the filler susceptibility in a three-
layer plate whose external layers are made of silica glass (£, = E; = E = 6.67 x 10* MPa, v; = v; = 0.22,
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p; = p; = 2.5 x 10° kgm™?), are investigated. The middle layer elasticity modulus E, was changed within
the following limits: 10~°E < E, < E. It is assumed that the other mechanical characteristics (Poisson’s ratio,
density) of the average layer are equal to the characteristics of silica glass (vi = v, = v3, p; = p, = p;). The
thickness of layers is #; = hy = h; = 0.01 m.

Calculations were carried out with the help of the generalized theory of multilayer plates, the Am-
bartsumyan’s classical theory (1974) (hypotheses of unique non-strained normal for the pack) and three-
dimensional theory.

The calculation results are reduced in a Fig. 7. Dependence of maximum stresses in the middle of the
plate outside surfaces from a modulus elasticity of an average layer here is shown. Fig. 7 also presents the
inplane stress distribution character over the plate thickness for three ratios of E,/E;. The distributions are

MPa |10° 10 10 . 1 B/

==t

three-dimensional theory
generalized theory {3,2}
generalized theory {1,0}

o——%  Ambartsumyan theory

3
P 4

E2/E1
0 B -4 2 >
10 10 10 1
. i )
80 40 g 40 Pt 80 40 g 40 Pl g0 40 g 40 Pip,MP
\% > \3? > >
S N
0.01 001 - 0.01
E,=107F E=107R E=5
'\-X% \&\ u.uz¥
\ .
0.03¥x; m 0.03¥x; m 0.03¥ 23, m

Fig. 7. Influence of a modulus elasticity of an average layer of three-layer plate on maximum values of inplane stresses.
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given for time instances when they achieve their maximum values on the outside surface of the first layer.
The results obtained by using the generalized theory {7, 6} are not shown in the figure since they practically
coincide with the three-dimensional solution (the difference makes up 2%).

It is seen from Fig. 7, that an increase in the middle layer elasticity modulus leads to a stress decrease
and at E, = E (homogeneous plate) it achieves its minimum value. The stress distributions over the
thickness obtained with the help of the generalized and three-dimensional theories are linear at E, = E.
When the elasticity modulus decreases it becomes piecewise-linear, whereas the distribution obtained by
the classical theory remains linear. Ambartsumyan’s theory closely fits the three-dimensional solution at
values of E, which satisfy the inequality E > E, > 1072E; theory {1, 0} yields a close fit at £ > E, >
10~*E, whereas the theory with the parameters {7, 6} or {3, 2} may be used for practically all investigated
values of E,.

Fig. 8 shows the specific distribution of transverse shear stresses pj, over the thickness of the plate
being considered for three ratios of E,/E,. The stresses are given for the point x; = 0.125 m, x, = 0.25 m.
It is seen from Fig. 8 that the distribution of the transverse shear stresses over the plate thickness has a

1 15
pl’vg, }\ZPa
£=0.88 ms B =5
i
i
v
0 0.5 1 15
! P, MPa
L)
0.01
[
t=228 ms ! B, =107F,
[
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|
X3 ¢
0
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t=16.6 ms B, =107g
0.0215 |
i
i
!
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Fig. 8. Variations of transverse shear stress through the thickness of a three-layer plate for different modulus elasticity of an average
layer: solid line, three-dimensional theory; dash-dotted line, theory {1, 0}; dotted line, theory {3, 2}; dashed line, theory {7, 6}.
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Fig. 9. Deflections of outside surfaces of three-layer plate with a soft filler: solid line, three-dimensional theory; dash-dotted line, theory
{1, 0}; dotted line, theory {3, 2}; dashed line, theory {7, 6}.

non-linear character. The generalized theory with parameters {3, 2} and {7, 6} allows obtaining a dis-
tribution that is very close to the actual one. The application of theory {1, 0}, which takes into account
shear stresses averaged over the layer thickness, makes it impossible to describe accurately the stress
distribution character over the thickness, as well as to fulfill (at least approximately) the interlayer contact
conditions.

Fig. 9 shows the change of deflections vs. time in the middle of the plate outside surfaces (x; = x, = 0.25
m, x; = 0 and x3 = 0.03 m) for the same plate in the case of soft filler (at E,/E, = 10~°). During strain of the
plate being considered there appear significant transverse strains in the soft filler. Therefore, the application
of theories, which do not allow for this effect, to similar structures leads to significant errors both in
maximum deflection values and in describing the plate deflection change vs. time. It is evident from Fig. 9
that the results obtained according to the generalized theory with parameters {3, 2} and {7, 6}, which take
into account the transverse strains, practically coincide with the three-dimensional solution.

6. Conclusions

The work sets forth the generalized two-dimensional theory of multilayer plates based on the power
series method, which makes it possible to take into account an arbitrary number of series terms in the
expansions of the sought for functions about the transverse coordinate.
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The numerical investigations carried out show a close fit of results obtained on the basis of the theory
proposed with account of a sufficient number of power series terms and the three-dimensional elasticity
theory for a representative set of multilayer plates.

A good solution convergence and the possibility of accurate determination of displacements, and inplane
stresses, as well as transverse normal and shear stresses, whose distribution over the thickness in some cases
has an essentially non-linear character, have been demonstrated.

This is especially important when investigating the affect of localized loads, for irregularly structured
multilayer objects having significantly differing mechanical properties of adjacent layers, as well as when
solving the problem of delamination.

The theory proposed has a wide field of application and allows for a valid description of the non-sta-
tionary (dynamic) response of multilayer plates having a practically any composition of layers and pack
thickness. A limitation of the given theory’s field of application is the impossibility to investigate the
processes of elastic wave propagation over the plate thickness.

A positive feature is the fact that numerical implementation of the problem of investigating the non-
stationary deflected mode of a multilayer plate on the basis of the theory proposed requires fewer resources
than when using the three-dimensional elasticity theory.

Appendix A

The elements of the lower triangle of matrix Q have the following form

Qi =8 =-Q3=2¢, Dy = DBuikivirk-1yi2 = h?Sikv Q3 k1 4it (p-1)1 hpSzm
S,  J<li
Q3 i (k=) 3 j (r— )T = S84 KT i (k= 1)1 3T j (r—1)] = hfh; Sikar, J=1
Sjr7 ] > ia
Sips Jj<i
Q3+2K1+1+(p 1)1342KI+j+(0-1) = _h h Sip+€7 ]: i» 17] = 1717 kar = 17K7 Zap = laLa
S/’m J>i
where
I
hip;
n = iz:n:hipiv Sik erl + k + 1

The remaining matrix elements for lower triangle are equal to zero.

Appendix B

The elements of the lower triangle of matrix A have the form

az 2 62 2 62
A =C C =C Ayy = C C
1,1 n3a2 2+ 2055 2 3lAT AT o000 22 2133 2+ 116)62

* . o o?
/13,1 = /13,2 = 0, A3z = —Cy 6_x% + 6_x§ ) A3+i+(k—l)1<l = h[ Dlzka 2 + Do = Gx%
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Aspivk-nr2 = Asikirviv(e-1)n1 = thykm, Az iy 1y hkﬂzz ox1

o? o
A3+t+(k DI3+j+(r—1)I nllk]r o 2 + ’121Ajr ox 2 + XZtk]ra

o? o2
A i+(k— = hk D i + D i ’ A i k
3+KI+i+(k—1)1,2 i < 2ik N o o 2 lik A 7 6x2 3+KI+i+(k—1)1,3 Bz; a
A A B
34KI+i+ (k=113 +j+(r—1)1 = N3ikjr axlaxz’ 3+2KI+i+(p—1I,1 — i Pai o, )
o? o?
A3+KI+!+(/€ DI3+KI+j+(r—1)1 1121k]r ox 2 + nl;kjr ox 2 + Xszjra

0? 0?
Az akiviv(p-1)1 hpﬁ4, . Asokriv(p-1)13 = —H; Dy <6x2 + 6x2> ;
1 2

0 0
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C.. = : h D... — hiﬁai
DCI_; jﬁxja ois — i S—f—l’
El(l — Vl') Ei Ei Eivi
(1+V,)(1 72\),) 2(1+V,) 2(1+V,)(1 72\),) (1 +V,)(1 72\),)
D, J<i 0, J<i 1341"} J<i
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Appendix C
The elements of matrices I'' and I'> have the form
0 0 0
1 1 1 ”
F“:C”a_xl’ F1,2=C416—xz» IR 1>’:th4f’a_xl’
1 0 1
F] BHKI+j+H(r—1)1 =1 D4/r axz’ Fl SH2KI+j+(0-1)1 =K ﬁ4p
1 1 1
F 22— F 33 T F3+K1+z+(k DI 34+KT+i+(k—1)1 F3+2KI+[+(p71)I,3+2K[+i+(p71)1 = 17
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The remaining elements of matrices I'' and I'* are equal to zero.
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